Catheter Ablation of VT in Structural Heart Disease

Structural Heart Disease

Myocardial infarction

Dilated cardiomyopathy

Arrhythmogenic right ventricular dysplasia

VT after MI - Patients Selection

- Patients with symptomatic sustained VT –VT is drug resistant
 - Patient is drug intolerant or does not desire long-term drug therapy
 - Patient receiving multiple ICD shocks not manageable by reprogramming or concomitant drug therapy

Preparation Prior to Ablation

Assessment of reversible ischemia Determination of LV function and reserve Anticoagulation status Exclusion of LV thrombus Evaluation of peripheral pulses Neurologic examination Details of antiarrhythmic therapy 12-lead ECGs and ICD recordings during

Macro/Microscopic Findings of MI

VT after Myocardial Infarction

Illustration of figure-8 VT circuit

Mapping Techniques

Mapping during VT

- Define a reentry circuit isthmus for ablation
- Early systolic activity/diastolic potentials
- Entrainment mapping
- Mapping during sinus rhythm
 - Unstable or noninducible VT
 - Delineate the anatomic and electrophysiological substrate
 - Pacemapping: define potential exit sites along the border of any-low voltage area
- Newer mapping tools
 - CARTO
 - Ensite

Mapping Criteria

Standard mapping

- Fragmented DP recorded during VT
- Stim-QRS interval during pacing = DP-QRS interval during VT
- Pre-systolic DP timed <70% of VT CL before QRS onset
- Entrainment with concealed fusion
- -PPI = VT CL
- Anatomic mapping
 - Site is within area of low voltage endocardial scar
 - Isolated DP recorded during SR or VT
 - Site is bounded by electrically unexcitable tissue
 - Long Stim-QRS delay evident during pacing
 - Pace map matches VT QRS morphology

Low Amplitude Diastolic Potentials

Mapping during VT

Ideal Site

73-year-old women with old inferior MI and recurrent VT

Ablation Techniques

Infarct Localization and Linear Ablation

Isthmus Width = 16±8 (6-36) mm Circulation 125:726,2002

VT in Dilated Cardiomyopathy

Mechanism: JCE 2000;11:11-17

- Reentry associated with scar: 62%
- Focal: 27%
- Bundle branch reentry: 17%
- Scar: JACC 43;1834,2004
 - Often adjacent to a valve annulus
 - Deep to the endocardium, transmural, epicardial

Endocardial Abnormality in DCM

Epicardial ablation of VT

Epicardial ablation of VT: When?

Patient with LV thrombus
Patient with prosthetic valve
Other vascular access problem
Endocardial failure

Possible damage to coronary artery & phrenic nerve

Arrhythmogenic RV Dyspalsia

Progressive fibrofatty infiltration of myocardium

VT Ablation in Patients with ARVD

- Reentry in over 80%
- Ablation was complete or partial success in 71%

VT recurred in 48%

Success Rate

Complications

- Vascular injuries (hematoma, pseudoanrurysm, fistula): <3%</p>
- Cardiac perforation/tamponade: <0.5%</p>
- Neurologic events (embolic or hemorrhagic stroke): <2.8%</p>
- MI or death: very rare
- Increased creatine kinase/troponin: in most
- Heart block
- Possible dislodgement of defibrillator leads
- Possible aggravation of heart failure
- Pericarditis: in epicardial ablation

Conclusions

- ICDs are first-line therapy for patients with VT and SHD.
- When antiarrhythmic drug therapy fails to control symptomatic recurrences of VT, catheter ablation should be considered.
- Elimination of recurrent or incessant VT leading to repeated ICD therapies is the anticipated outcome.
- Long term VT elimination is achievable in up to two-thirds who have mappable or unmappable VT.